Search results for "Spin isomers of hydrogen"
showing 10 items of 21 documents
Towards large‐scale steady‐state enhanced nuclear magnetization with in situ detection
2021
Magnetic resonance in chemistry 59(12), 1208 - 1215 (2021). doi:10.1002/mrc.5161
Cavitation of electron bubbles in liquid parahydrogen
2011
Within a finite-temperature density functional approach, we have investigated the structure of electron bubbles in liquid parahydrogen below the saturated vapour pressure, determining the critical pressure at which electron bubbles explode as a function of temperature. The electron-parahydrogen interaction has been modelled by a Hartree-type local potential fitted to the experimental value of the conduction band-edge for a delocalized electron in pH(2). We have found that the pressure for bubble explosion is, in absolute value, about a factor of two smaller than that of the homogeneous cavitation pressure in the liquid. Comparison with the results obtained within the capillary model shows t…
Nucleation and cavitation in parahydrogen
2012
We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model. (C) 2011 Elsevier B.V. All rights reserved.
Thermal effects on small para-hydrogen clusters
2010
A brief review of different quantum Monte Carlo simulations of small (p-H2)N clusters is presented. The clusters are viewed as a set of N structureless p-H2 molecules, interacting via an isotropic pairwise potential. Properties as superfluidity, magic numbers, radial structure, excitation spectra, and abundance production of (p-H2)N clusters are discussed and, whenever possible, a comparison with 4HeN droplets is presented. All together, the simulations indicate that temperature has a paradoxical effect of the properties of (p-H2)N clusters, as they are solid-like at high T and liquid-like at low T, due to quantum delocalization at the lowest temperature. © 2010 Wiley Periodicals, Inc. Int …
Conformation resolved induced infrared activity: trans- and cis-formic acid isolated in solid molecular hydrogen
2011
We report combined experimental and theoretical studies of infrared absorptions induced in solid molecular hydrogen by different conformers of formic acid (HCOOH, FA). FTIR spectra recorded in the H(2) fundamental region (4120-4160 cm(-1)) reveal a number of relatively strong trans-FA induced Q-branch absorptions that are assigned by studying both FA-doped parahydrogen (pH(2)) and normal hydrogen (nH(2)) samples. The induced H(2) absorptions are also studied for HCOOD doped nH(2) crystals for both the trans and cis conformers that show resolvable differences. Samples containing90% of the higher energy cis-HCOOD conformer are produced by in situ IR pumping of the OD stretching overtone of tr…
Singlet‐Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism
2020
Abstract Hyperpolarization‐enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13C, 15N, or 129Xe due to their long spin‐polarization lifetimes and the absence of a proton‐background signal from water and fat in the images. Here we present a novel type of 1H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long‐lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para‐enriched hydrogen gas, and the proton singlet order in fumarate is released a…
Towards Large-Scale Steady-State Enhanced Nuclear Magnetization with In Situ Detection
2021
Signal Amplification By Reversible Exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale, however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop NMR spectrometer). Moreover, (iii) continuous parahydrogen bubbling accele…
Real Time Nuclear Magnetic Resonance Detection of Fumarase Activity using Parahydrogen-Hyperpolarized [1-13C]fumarate
2019
Hyperpolarized fumarate can be used as a probe of real-time metabolism in vivo, using carbon-13 magnetic resonance imaging. Dissolution dynamic nuclear polarization is commonly used to produce hyperpolarized fumarate, but a cheaper and faster alternative is to produce hyperpolarized fumarate via PHIP (parahydrogen induced polarization). In this work we trans-hydrogenate [1-13C]acetylene dicarboxylate with para-enriched hydrogen using a commercially available Ru catalyst in water to produce hyperpolarized [1-13C]fumarate. We show that fumarate is produced in 89% yield, with succinate as a side product in 11% yield. The proton polarization is converted into 13C magnetization using a constant …
Hyperpolarization of cis ‐ 15 N 2 ‐Azobenzene by Parahydrogen at Ultralow Magnetic Fields**
2021
The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15 N2 -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suit…
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation
2013
Hyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state. Symmetrical molecules hyperpolarized by Parahydrogen Induced Hyperpolarization (PHIP) provide a straightforward access to hyperpolarized singlet states because the initial parahydrogen singlet state is preserved at almost any magnetic field strength. In these systems, which show a remarkably long 1H singlet state lifetime of several minutes, the conversion of t…